Contact us

Contact us

Email
aikred@accord-power.com
Call Us
0086 559 2621813
Mon - Sat 9.00 - 18.00 Sunday Closed
Weiyi Road, Shexian Recycling Economic Park, Huangshan City, Anhui Province, China
Contact us
aikred@accord-power.com
0086 559 2621813
Facebook
Twitter
Linkedin
How to Estimate the LiFePO4 Battery SOC?
2024-01-08

How to Estimate the LiFePO4 Battery SOC

How to Estimate the LiFePO4 Battery SOC?



Lithium Iron Phosphate (LiFePO4) batteries have become increasingly popular in recent years due to their high energy density, long cycle life, and inherent safety. However, accurately estimating the State of Charge (SOC) of LiFePO4 battery can be challenging. In this article, we will discuss methods for estimating the SOC of LiFePO4 battey.

Estimating SOC Based on Resting Voltage

One straightforward way to estimate the SOC is to measure the battery’s open circuit voltage (OCV) after allowing it to rest for 30 minutes without charging or discharging. The resting OCV provides a reasonable indication of the SOC for LiFePO4 batteries:

SOCCharge Voltage
100%13.6V
99%13.4V
90%13.2V
70%13.1V
40%13.0V
30%12.9V
20%12.8V
14%12.7V
9%12.6V
0%10.0V

This table provides reference voltages at various SOCs. However, slight variations may occur among different LiFePO4 batteries so some calibration may be required. The resting voltage method provides a simple way to estimate SOC without complex circuitry or computation. However, it requires the battery to be at rest which is not always practical.

Other SOC Estimation Methods

While the resting voltage method is simple, other techniques can estimate SOC during operation:

– Coulomb counting integrates current to calculate SOC.
– Impedance measurement determines SOC based on conductivity.
– Machine learning algorithms correlate data to estimate SOC.

These methods can account for battery dynamics but require accurate sensors, complex hardware, and computations.

Conclusion

For a straightforward SOC estimate, measuring resting voltage after 30 minutes provides a reliable indication across a wide SOC range. However, other methods like coulomb counting may be required during continuous operation. The optimal SOC estimation approach balances accuracy, cost, and computational needs for the application. Proper SOC monitoring enables safe, efficient use of LiFePO4 batteries.