# Residential Stacked Energy Storage System

# **User Manual**



## Important Safety Instruction

## Please keep this manual for future use.

This manual contains all safety, installation and operating instructions for the residential energy storage system. Please read all instructions and precautions in the manual carefully before installation and use.

- Non-safety voltage exists inside the solar inverter. To avoid personal injury, users shall not disassemble the product themselves. Contact our professional maintenance personnel if their is a need for repair.
- > Do not place the product within the reach of children.
- > Do not put the product in harsh environments such as moist, oily, flammable or explosive, or heavily dusty areas.
- > The mains input and AC output are high voltage, so please do not touch the wiring terminals.
- > The housing of the solar inverter is hot when it is working, which is normal condition, do not touch it.
- > Do not open the terminal protective cover when the solar inverter is working.
- > It is recommended to attach proper fuse or circuit breaker to the outside of the solar inverter.
- > Always disconnect the fuse or circuit breaker near the terminals of PV array, mains and battery before installing and adjusting the wiring of the solar inverter.
- After installation, check that all wire connections are tight to avoid heat accumulation due to poor connection, which is dangerous.
- > The solar inverter is off-grid. It is necessary to confirm that it is the only input device for load, and it is forbidden to use it in parallel with other input AC power to avoid damage.
- ➤ Do recharge the battery within 24 hours to 60%-70% if it's power is none. Even no use of the product, charge the battery every month to 60%-80% at least will optimize it's lifespan and high performance.
- > Use dry powder fire extinguisher in case of fire.
- > For safety and security, any attempt to modify, replace the internal battery or any other component of the unit by anyone other than qualified personnel is forbidden, and which will cause no warranty provided by our company.

## Contents

| 1. Basic Information                                    | 4  |
|---------------------------------------------------------|----|
| 1.1 Product overview and characteristics                | 4  |
| 1.2 Basic system introduction                           | 5  |
| 1.3 Appearance                                          | 6  |
| 1.4 Dimension drawing                                   | 7  |
| 2. Installation Instruction                             | 8  |
| 2.1 Installation Precautions                            | 8  |
| 2.2 Wiring specifications and circuit breaker selection | 9  |
| 2.3 Wiring And Starting                                 | 10 |
| 3. Operating Mode                                       | 13 |
| 3.1 Charge mode                                         | 14 |
| 3.2 Output mode                                         | 14 |
| 4. LCD screen operating instructions                    | 17 |
| 4.1 Operation and display panel                         | 17 |
| 4.2 Introduction to operation keys                      | 17 |
| 4.3 Introduction to indicator lights                    | 17 |
| 4.4 Introduction to LCD screen                          | 18 |
| 4.5 Setting parameters                                  | 21 |
| 4.6 Battery type parameters                             | 29 |
| 5. Other Function                                       | 31 |
| 5.1 Dry contact function                                | 31 |
| 5.2 RS485 communication function                        | 31 |
| 5.3 USB communication function                          | 31 |
| 6. Protection                                           | 32 |
| 6.1 Protection function                                 | 32 |
| 6.2 Meaning of fault code                               | 34 |
| 6.3 Some fault troubleshooting                          | 37 |
| 7. System Maintenance                                   | 38 |
| 8. Technical Parameter                                  | 39 |

## 1. Basic Information

#### 1.1 Product overview and characteristics

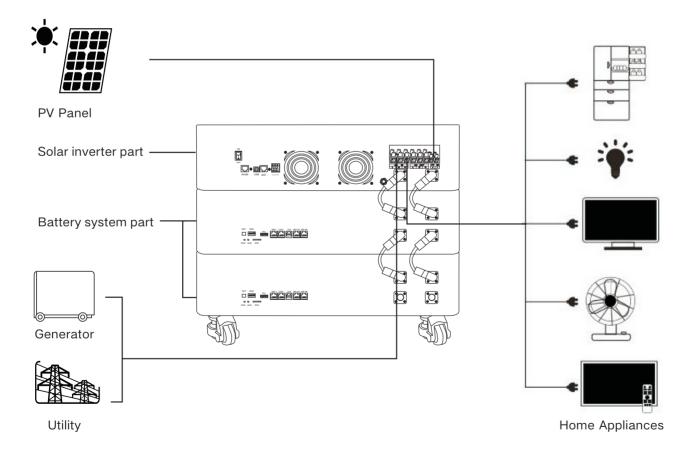
HSI 5500P is a new solar storage inverter, which integrates solar energy storage & mains charging energy storage and AC sine wave output. Thanks to DSP control and advanced control algorithm, it has high response speed, high reliability and high industrial standard. There are four charge modes namely only solar power, mains power priority, solar power priority, mains power & solar power; inverter and mains outputs are selectable to meet different application needs.

The solar charge module adopts the latest optimized MPPT tracking technology, which can quickly track the maximum power point of the PV array in any environment to obtain the maximum energy of the solar panel in real time with wide voltage range of MPPT.

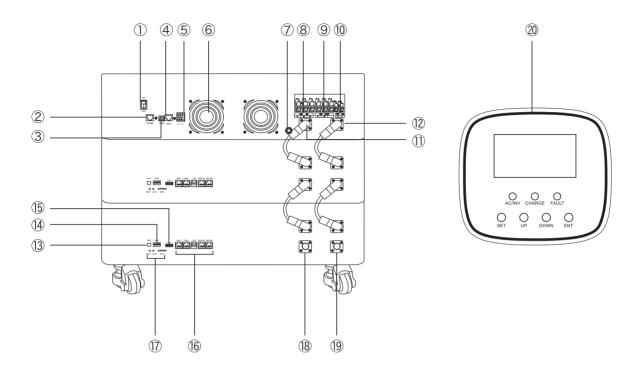
AC-DC charge module adopts advanced control algorithm to realize full digital double closed-loop control of voltage and current, with high control accuracy and small volume. Battery can be charged and protected stably and reliably with wide AC voltage input range, full input/output protection function.

DC-AC inverter module based on full digital intelligent design adopts advanced SPWM technology, outputs pure sine wave, converts DC into AC. It is suitable for AC loads such as household appliances, electric tools, industrial device, electronic audiovisual, etc. The product adopts the segment LCD display design to display the operation data and state of the system in real time. The comprehensive electronic protection function ensures that safety and stability of the whole system.

#### Features:


- 1. Adopt full digital voltage and current double closed-loop control and advanced SPWM technology to output pure sine wave.
- 2. Two output modes, i.e. mains bypass and inverter output can achieve uninterrupted power supply function.
- 3. Four optional charge modes: only solar energy, mains priority, solar energy priority and mixed charging.
- 4. Advanced MPPT technology, with efficiency up to 99.9%.
- 5. LCD screen design and 3 LED indicator lights dynamically display system data and operation states.
- 6. ON/OFF rocker switch can control AC output.
- 7. With power saving mode function, it can reduce no-load loss.
- 8. Intelligent adjustable speed fan is adopted for efficient heat dissipation and extended system life.
- 9. With lithium battery PV and utility activation function, support lead-acid battery and lithium battery.
- 10. Possessing multiple protection functions and 360  $^{\circ}$  comprehensive protection.
- 11.Possessing complete short circuit protection, over voltage and undervoltage protection, over load protection, back filling protection, etc.
- 12.LiFePO4 lithium battery,6000 cycling times, intelligent BMS system,safe and long service time.
- 13.Big capacity, makes daily life power consumption like in lack of electricity situation or emergency power consumption like in disaster situation guaranteed.
- 14.Stacked and wheeled design, easy to reduce or expand the power capacity and convenient to move and transport.

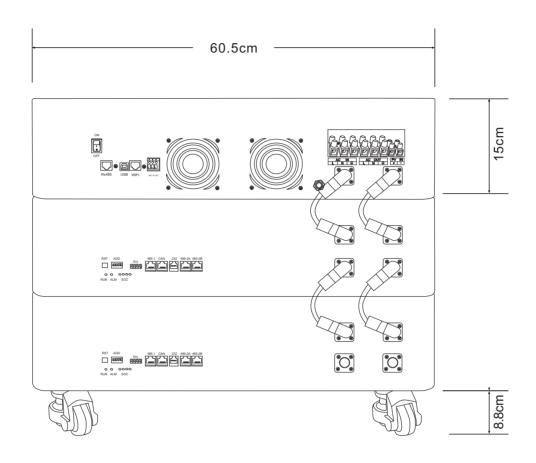
#### 1.2 Basic system introduction


The figure below shows the system application scenario of this product. A complete system includes the following parts:

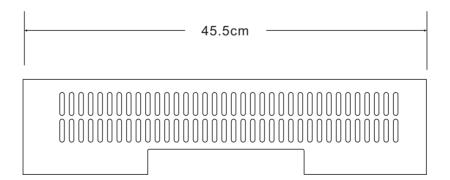
- 1. PV module: convert the light energy into direct current energy and then charge the battery via the machine, or directly invert the light energy into alternating current to supply power to the load.
- 2. Mains or generator: connected at the AC input, it can supply power to the load and charge the battery at the same time. If no mains power or generator is connected, the system can also operate normally. At this time, the load power is supplied by the battery and PV modules.
- 3. Battery: the battery is to ensure the normal power consumption of the system load in case of no sufficient solar energy or mains supply.
- 4. Household load: it can be connected to various household and office loads, including AC loads such as refrigerators, lamps, televisions, fans, air conditioners, etc.
- 5. Inverter: the energy conversion device of the whole system.

The specific system wiring mode is determined by the actual application scenario.




## 1.3 Appearance




| 1   | Solar inverter ON/OFF switch            | 11) | Solar inverter DC input "+" positive terminal for battery |
|-----|-----------------------------------------|-----|-----------------------------------------------------------|
| 2   | Solar inverter RS485 communication port | 12  | Solar inverter DC input "-" negative terminal for battery |
| 3   | USB port                                | 13  | Battery RESET switch                                      |
| 4   | WIFI port                               | 14) | Battery ADDRESS dip switch                                |
| (5) | Solar inverter dry contact port         | 15  | Battery dry contact port                                  |
| 6   | Solar inverter Cooling fan              | 16  | Battery communication port:RS485,CAN,RS232.               |
| 7   | Overload protector                      | 17) | Battery state led indicator                               |
| 8   | AC input terminal                       | 18  | Battery "+" positive terminal                             |
| 9   | AC output terminal                      | 19  | Battery "-" negative terminal                             |
| 10  | PV terminal                             | 20  | LCD screen                                                |

## 1.4 Dimension drawing

### **Back**



## Side



## 2. Installation Instruction

#### 2.1 Installation Precautions

Before installation, please carefully read the manual and get familiar with the installation steps.

- ➤ Be very careful when installing the battery. Wear safety goggles when installing a lead-acid liquid battery. Once coming into contact with the battery acid, rinse with clean water timely.
- > Do not place metal objects near the battery to prevent short-circuit of the battery.
- > Acid gas may be generated when the battery is charged. So, please ensure good ventilation.
- > When installing the cabinet, be sure to leave enough space around the solar storage inverter for heat dissipation. Do not install the solar storage inverter and lead-acid battery in the same cabinet to avoid corrosion by acid gas generated during battery operation.
- > Only the battery that meets the requirements of the unit can be charged.
- Poorly connected connections and corroded wires may cause great heat which will melt the wire insulation, burn the surrounding materials, and even cause fires. So, make sure the connectors have been tightened, and the wires are secured with ties to avoid looseness of connections caused by shaking of wires during mobile application.
- The system connection wires are selected according to a current density of not more than 5 A/mm2.
- Avoid direct sunlight and rainwater infiltration for outdoor installation.
- > Even after the power is turned off, there is still high voltage inside the unit. Do not open or touch the internal components, and avoid related operations until the capacitor completely discharges.
- > Do not install the solar storage inverter in harsh environments such as moist, oily, flammable or explosive, or heavily dusty areas.
- Polarity at the battery input end of this product shall not be reversed, otherwise it may damage the device or cause unpredictable danger.
- The mains input and AC output are high voltage, so please do not touch the wiring terminals.
- When the fan is working, do not touch it to prevent injury.
- It is necessary to confirm that the solar storage inverter is the only input device for load equipment, and it is forbidden to use it in parallel with other input AC power to avoid damage.

#### 2.2 Wiring specifications and circuit breaker selection

Wiring and installation must comply with national and local electrical codes.

Recommended PV array wiring specifications and circuit breaker selection: Since the output current of the PV array is affected by the type, connection method and illumination angle of the PV module, the minimum wire diameter of the PV array is calculated according to its short-circuit current; refer to the short-circuit current value in the PV module specification (the short-circuit current is constant when the PV modules are connected in series; the short-circuit current is the sum of the short-circuit currents of all PV modules connected in parallel); the short-circuit current of the PV array shall not exceed the maximum input current.

#### Refer to the table below for PV input wire diameter and switch:

| Recommended wiring diameter | Maximum PV input current | Recommended air switch or circuit breaker type |
|-----------------------------|--------------------------|------------------------------------------------|
| 6mm²/ 10AWG                 | 22A                      | 2P— 25A                                        |

Note: the voltage in parallel shall not exceed maximum PV open-circuit voltage.

#### Refer to the table below for recommended AC input wire diameter and switch:

| Recommended wiring diameter | Maximum bypass<br>input current | Recommended air switch or circuit breaker type |
|-----------------------------|---------------------------------|------------------------------------------------|
| 10mm²/7AWG                  | 40A                             | 2P—40A                                         |

**Note:** there is already a corresponding breaker at input connection point of mains supply. Therefore, no breaker may be equipped.

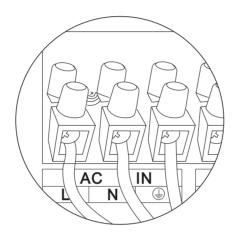
#### > Recommended battery input wire diameter and switch selection:

| Recommended wiring diameter | Rated battery discharge current | Maximum charge current | Recommended air switch or circuit breaker type |
|-----------------------------|---------------------------------|------------------------|------------------------------------------------|
| 30mm²/2AWG                  | 125A                            | 100A                   | 2P— 160A                                       |

#### Recommended AC output wiring specifications and circuit breaker selection:

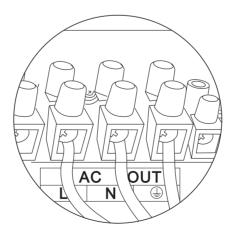
| Recommended AC output wiring diameter | Rated inverter AC output current | Maximum bypass output current | Recommended air<br>switch or circuit<br>breaker type |
|---------------------------------------|----------------------------------|-------------------------------|------------------------------------------------------|
| 10mm²/7AWG                            | 24A                              | 40A                           | 2P—40A                                               |

**Note:** The wiring diameter is for reference only. If the distance between the PV array and the solar storage inverter or the distance between the solar storage inverter and the battery is relatively long, using a thicker wire can reduce the voltage drop to improve system performance.


**Note:** The above are only recommended wiring diameter and circuit breaker. Please select the appropriate wiring diameter and circuit breaker according to actual situations.

#### 2.3 Wiring And Starting

#### AC input/output wiring method:

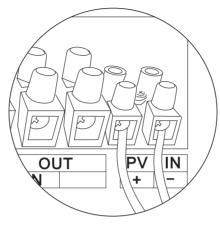

- ① Before AC input/output wiring, disconnect the external breaker at first and then confirm whether the cable used is thick enough. Please refer to chapter "2.2 Wiring Specification and Breaker type";
- ② Correctly connect AC input wire in accordance with cable sequence and terminal position shown in the figure below. Please connect ground lead at first, and then live wire and mull wire;

L: Live N: Neutral (1): Ground



3 Correctly connect AC output wire in accordance with cable sequence and terminal position shown in the figure below. Please connect the ground wire at first, and then live wire and null wire. The ground wire is connected to the ground screw hold through O-type terminal.

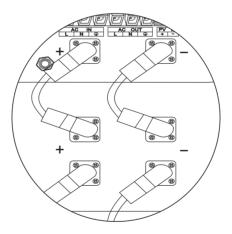
L: Live N: Neutral (1): Ground



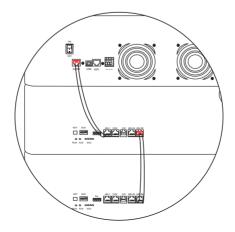

**Note:** The grounding wire shall be as thick as possible (cross-sectional area is not less than 4mm<sup>2</sup>). The grounding point shall be as close as possible to the solar storage inverter. The shorter the grounding wire, the better.

#### PV input wiring method:

- ① Prior to wiring, disconnect the external circuit breaker and confirm that the wire used is thick enough. Please refer to Section 2.2 "Wiring Specifications and Circuit Breaker Selection";
- <sup>2</sup> Properly connect the PV input wire according to the wire sequence and terminal position shown in the figure below.


PV+: PV positive PV-: PV negative




### BAT wiring method:

- ① Before wiring, disconnect external breaker at first, and then confirm whether the used cable is thick enough. Please refer to chapter "2.2 Wiring Specification and Breaker Type".
- ② Correctly connect BAT wire in accordance with cable sequence and terminal position shown in the figure below.

BAT+: Battery positive BAT-: Battery negative



#### Communication wiring method:



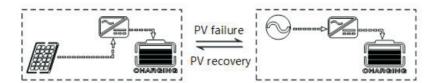
#### Warning notice:

- ① Input from mains supply, AC output and PV array may generate high voltage. Before wiring, make sure to break the breaker or fuse;
- ② During wiring process, make sure to pay attention to the safety; during the wiring process, please don't close the breaker or fuse. At the same time, guarantee that "+" and "-" poles of different parts are correctly connected with wires; a breaker must be installed at the battery end and selected based on chapter "2.2 Wiring Specification and Breaker Type". Before wiring, make sure to break the breaker to prevent strong electric spark generated during wiring. At the same time, avoid battery short circuit during the wiring process; if the machine is in the area with frequent thunder, it is suggested to install an external arrester at PV input terminal.
- Make sure the wires are correctly and firmly connected, especially whether the positive and negative input poles of the battery are correct, whether the positive and negative input poles of PV are correct, whether AC input is inaccurately connected to AC output terminal.

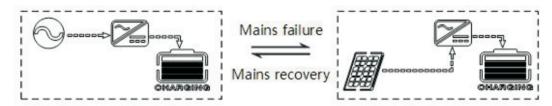
#### **Starting**

At first close the breaker at the battery end, and then press the rocker switch at the lower left side of the machine to "ON" state, "AC/INV" indicator light flashes, indicating normal operation of inverter. Afterwards, close breakers of PV array and mains supply. In the end, after AC output is normal, turn on AC load one by one to avoid protection action generated by great instant impact owing to simultaneous turnon of loads. The machine operates normally in accordance with set mode.

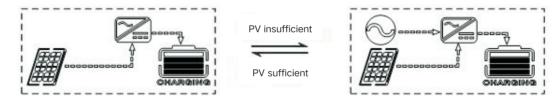



**Note:** if power is supplied to different AC loads, it is suggested to turn on the loads with great impact current, and then turn on the load with little impact current after the load operates stably.

**Note:** in case of abnormal operation of machine or abnormal display of LCD or indicator light, refer to Chapter 6 for troubleshooting.


## 3. Operating Mode

#### 3.1 Charge mode


1) **PV priority:** PV module will charge the battery preferentially, and the battery is charged by the Mains only when the PV system fails. During the day, solar energy is fully used to charge, while at night, it converts to the Mains. This can maintain battery level, and is ideal for areas where the grid is relatively stable and electricity price is relatively high.



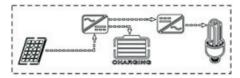
2) Mains priority: The Mains supply is preferentially used to charge the battery. Only when the Mains fails, the PV charging can be activated.



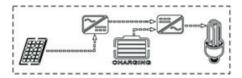
3) **Hybrid charging:** PV and mains hybrid charging. PV MPPT charging is a priority, and when PV energy is insufficient, the mains supply supplements. When the PV energy is sufficient again, the mains stops charging. This is the fastest charging mode, suitable for the areas where power grid is unstable, providing sufficient backup power supply at any time.



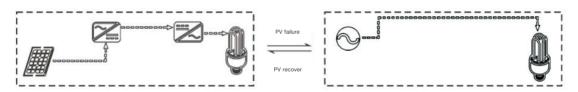
4) **Only Solar:** Only PV charging, without Mains charging. This is the most energy-efficient way in which battery is charged only by solar panels, and is usually used in areas with good lighting conditions.



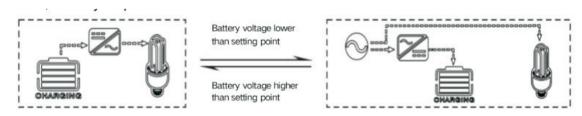

### 3.2 Output mode


#### > PV priority mode:

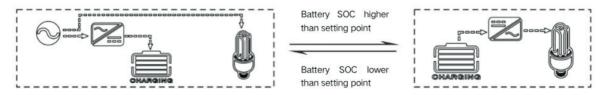
Use PV and battery energy to power loads, with PV taking priority.


When the PV energy is greater than the load, the excess energy charges the battery:




When the PV energy is less than the load, the battery replenish the power supply.




When PV is invalid, switch to mains power supply and charging. When PV is restored, switch back to PV and battery to power the load.



No BMS communication: when the battery voltage is lower than [04] setting item, switch to mains power supply and charging. When the battery voltage is higher than [05] setting item, switch back to PV and battery to supply power to the load.

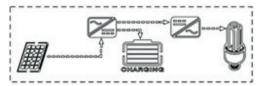


With BMS communication: when the battery SOC is lower than [61] setting items, switch to utility power supply and charging; when the battery SOC is higher than [62] setting items, switch to PV, battery to power the load.

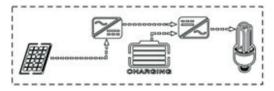


This model maximizes the use of solar energy while maintaining battery power and is suitable for areas with stable power grid.

#### Mains priority mode:


Switch to inverter power supply only when there is no utility power, and switch to utility power charging and supply when utility power recovery. The equipment is as a backup UPS, used in areas with unstable power grid. Switching does not affect the PV charging.

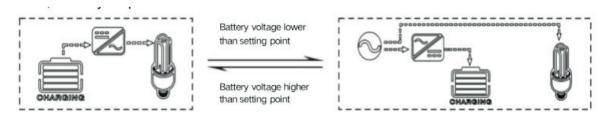



#### > Inverter priority mode:

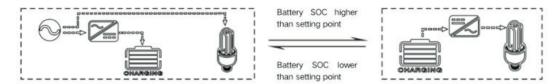
Use PV and battery energy to power the load, with PV taking priority.

When the PV energy is greater than the load, the excess energy charges the battery.




When the PV energy is less than the load, the battery replenishes power to the load.

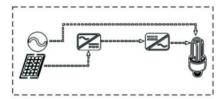



When the PV is ineffective, the battery power the load. Cycle the battery charge and discharge.



No BMS communication: When the battery voltage is lower than [04] setting item, switch to mains power supply and charging. When the battery voltage is higher than [05] setting item, switch to PV, battery to power the load.




With BMS communication: when the battery SOC is lower than the [61] setting item, switch to utility power supply and charging; when the battery SOC is higher than the [62] setting item, switch to PV, battery to power the load.



This mode maximizes the use of DC energy and is used in grid stable areas. Does not affect PV charging.

#### > Hybrid power supply to loads:

When no battery is connected or when the battery is fully charged, the PV and mains power are mixed together to supply the load and the PV is output at its maximum output power.

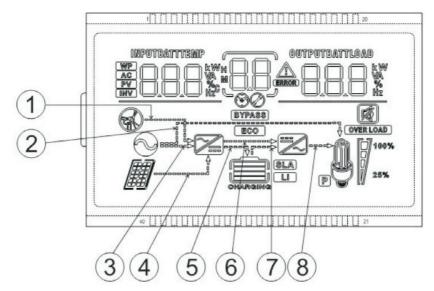


## 4. LCD screen operating instructions

## 4.1 Operation and display panel

The operation and display panel is as shown below, including 1 LCD screen, 3 indicators and 4 operation buttons.




## 4.2 Introduction to operation keys

| Function Key | Description                             |
|--------------|-----------------------------------------|
| SET          | Enter/exit setting menu                 |
| UP           | Last option                             |
| DOWN         | Next option                             |
| ENT          | Confirm/enter option under setting menu |

## 4.3 Introduction to indicator lights

| Indicator light | Color Description |                                  |
|-----------------|-------------------|----------------------------------|
| AC/INV          | Yellow            | Constant on: mains supply output |
| AC/IIIV         | reliow            | Flashing: inverter output        |
| CHARGE          | GE Green          | Flashing: battery in charge      |
| CHARGE          |                   | Constant on: charge completed    |
| FAULT           | Red               | Constant on: fault state         |

### 4.4 Introduction to LCD screen



| Icon | Function                                                                                                                                                                                                                                               | Icon             | Function                                                                                                                                                                                 |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | Indicating that AC input end has been connected to power grid                                                                                                                                                                                          |                  | Indicating that inverter circuit is in working.                                                                                                                                          |
|      | Indicates that the AC input mode in APL mode (wide voltage range)                                                                                                                                                                                      | BYPASS           | Indicating that the machine is in mains supply bypass work mode                                                                                                                          |
|      | Indicating that PV input end has been connected to solar battery panel                                                                                                                                                                                 | (4.000.445)      | Indicating that AC output is in overload state                                                                                                                                           |
|      | Indicating that machine has been connected to battery.  indicating 0%~24%  battery remaining capacity  indicating 25%~49%  battery remaining capacity  indicating 50%~74%  battery remaining capacity  indicating 75%~100%  battery remaining capacity | 100%<br>0<br>25% | Indicating percentage of AC output load.   indicating 0%~24% load percentage,  indicating 25%~49% load percentage,  indicating 50%~74% load percentage,  indicating ≥75% load percentage |

| LI                                                                                                                                                                                                                               |                                                                                                                               | Indicating that present battery type of the machine is lithium battery                                    |                                       | Indicating that buzzer is not enabled                                                                                                                                     |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| (8LA                                                                                                                                                                                                                             | Ð                                                                                                                             | Indicating that current battery type of machine is lead-acid battery                                      |                                       | Indicating alarm of machine                                                                                                                                               |  |
| CHARRI                                                                                                                                                                                                                           | N2                                                                                                                            | Indicating that the battery is in charge state.                                                           | (ERROR)                               | Indicating that the machine is in fault state.                                                                                                                            |  |
| 000                                                                                                                                                                                                                              |                                                                                                                               | Indicating that AC/PV charge circuit is in working                                                        | $\mathscr{D}$                         | Indicating that the machine is in setting mode.                                                                                                                           |  |
|                                                                                                                                                                                                                                  | Indicating that AC output end has AC voltage output                                                                           |                                                                                                           | <b>88</b> ,                           | Middle parameter display of screen,  1. In non-setting mode, displaying alarm or fault code; 2. In setting mode, displaying code of parameter item under current setting. |  |
| P                                                                                                                                                                                                                                | When used in parallel, this icon is displayed to indicate that this unit is the main unit and is only valid in parallel mode. |                                                                                                           |                                       |                                                                                                                                                                           |  |
| Parame                                                                                                                                                                                                                           | eter o                                                                                                                        | display at left side of screen: input                                                                     | parameter                             |                                                                                                                                                                           |  |
| AC                                                                                                                                                                                                                               | Indicating AC input                                                                                                           |                                                                                                           |                                       |                                                                                                                                                                           |  |
| PV                                                                                                                                                                                                                               | Latinative Division I                                                                                                         |                                                                                                           |                                       |                                                                                                                                                                           |  |
|                                                                                                                                                                                                                                  | ]                                                                                                                             | Indicating inverter circuit                                                                               |                                       |                                                                                                                                                                           |  |
| (WP                                                                                                                                                                                                                              |                                                                                                                               | The icon is not displayed                                                                                 |                                       |                                                                                                                                                                           |  |
| IMPUTRATTI<br>MP<br>AC<br>PY<br>BHY                                                                                                                                                                                              | TEMP LW NZ                                                                                                                    | Displaying battery voltage, total of supply, AC input voltage, AC input temperature of internal radiator, | ut frequency                          |                                                                                                                                                                           |  |
| Parame                                                                                                                                                                                                                           | eter c                                                                                                                        | lisplay at right side of screen: outp                                                                     | out paramet                           | er                                                                                                                                                                        |  |
| Indicating output voltage, output current, output active power, output apparent power, battery discharge current, software version; under setting modisplaying the setting parameter under the parameter item code set currently |                                                                                                                               |                                                                                                           | software version; under setting mode, |                                                                                                                                                                           |  |
| Arrow                                                                                                                                                                                                                            | Arrow display                                                                                                                 |                                                                                                           |                                       |                                                                                                                                                                           |  |
| 1                                                                                                                                                                                                                                | ① The arrow is not displayed                                                                                                  |                                                                                                           | 5                                     | Indicating charge from charge circuit to battery end                                                                                                                      |  |
| 2                                                                                                                                                                                                                                | Indi<br>Ioad                                                                                                                  | cating power grid power supply to                                                                         | 6                                     | The arrow is not displayed                                                                                                                                                |  |
| 3                                                                                                                                                                                                                                |                                                                                                                               | cating power grid power supply to                                                                         | 7                                     | Indicating power supply from battery end to inverter circuit                                                                                                              |  |
| 4                                                                                                                                                                                                                                | Indi<br>circ                                                                                                                  | cating PV power supply to charge uit                                                                      | 8                                     | Indicating power supply from inverter circuit to load                                                                                                                     |  |
|                                                                                                                                                                                                                                  |                                                                                                                               |                                                                                                           |                                       |                                                                                                                                                                           |  |

### Real-time data view method

In LCD main screen, press keys "UP" and "DOWN" to turn page and view different realtime data of the machine.

| Page | Parameters on the left side of the screen            | Parameters in the middle of the screen | Parameters on the right side of the screen |
|------|------------------------------------------------------|----------------------------------------|--------------------------------------------|
| 1    | INPUT BATT V                                         |                                        | OUTPUT LOAD V                              |
| '    | (Battery input voltage)                              |                                        | (Output load voltage)                      |
|      | BMS BATT V                                           |                                        | BMS BATT SOC                               |
| 2    | (BMS battery voltage, valid when BMS is enabled)     |                                        | (BMS battery remaining capacity            |
|      | (bivis battery voltage, valid when bivis is enabled) |                                        | percentage, valid when BMS is enabled)     |
| 3    | PV TEMP °C                                           |                                        | PV OUTPUT KW                               |
|      | (PV charger heatsink temperature)                    |                                        | (PV output power)                          |
| _    | PV INPUT V                                           |                                        | PV OUTPUT A                                |
| 4    | (PV input voltage)                                   |                                        | (PV output current)                        |
| F    | INPUT BATT A                                         |                                        | OUTPUT BATT A                              |
| 5    | (Input battery current)                              |                                        | (Battery output current)                   |
| 6    | INPUT BATT KW                                        |                                        | OUTPUT BATT KW                             |
| 0    | (Battery input power)                                |                                        | (Battery output power)                     |
| 7    | AC INPUT Hz                                          | Fault code                             | AC OUTPUT LOAD Hz                          |
| r    | (AC input frequency)                                 |                                        | (AC output frequency)                      |
| 0    | AC INPUT V                                           |                                        | AC OUTPUT LOAD A                           |
| 8    | (AC input voltage)                                   |                                        | (AC output load current)                   |
| 0    | INPUT V                                              |                                        | OUTPUT LOAD KVA                            |
| 9    | (For maintain)                                       |                                        | (Load apparent power)                      |
|      | INV TEMP °C                                          |                                        | INV OUTPUT LOAD KW                         |
| 10   | (AC charge or battery discharge heatsink             |                                        | (Load active power)                        |
|      | temperature)                                         |                                        | (Load active power)                        |
| 11   | APP software version                                 |                                        | Bootloader software version                |
| 12   | Model Battery Voltage Rating                         |                                        | Model Output Power Rating                  |
| 13   | Model PV Voltage Rating                              |                                        | Model PV Current Rating                    |
| 14   | RS485 address                                        |                                        | Phase sequence display                     |

#### 4.5 Setting parameters

Key operation description: to enter setting menu and exit from setting menu, please press key "SET". After entering the setting menu, parameter number [00] shall flash. At this time, press keys "UP" and "DOWN" to select the parameter item code to be set. Afterwards, press key "ENT" to enter parameter editing state. At this moment, the parameter value can flash. The parameter values are adjusted through keys "UP" and "DOWN". In the end, press key "ENT" to complete parameter editing and return to parameter selection state.

Note: In parallel mode, all machines will synchronise the setup parameters of the host machine (the machine with "P" on the display) before switching on, and the setup parameters of any machine will be synchronised with other machines in the system after switching on.

| Parameter<br>No. | Parameter name              | Setting               | Description                                                                                                                                                                                                                                             |  |
|------------------|-----------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 00               | Exit                        | [00] ESC              | Exit from setting menu.                                                                                                                                                                                                                                 |  |
|                  |                             | [01] SOL              | PV priority mode, when PV is invalid or battery value is lower than the parameter [04] setting value, it shall switch to AC power.                                                                                                                      |  |
| 01               | Work priority mode          | [01] UTI<br>default   | AC priority mode, it switches to inverter only when the AC power is invalid.                                                                                                                                                                            |  |
|                  |                             | [01] SBU              | Inverter priority mode, switching to mains only when<br>the battery is under-voltage or below the value set in<br>parameter [04]; switching to battery discharge only<br>when the battery is fully charged or above the value<br>set in parameter [05]. |  |
| 02               | Output<br>frequency         | [02] 50.0 default     | Bypass self-adaption, it automatically adapts to AC frequency in case of AC power; without AC power, the output frequency can be s                                                                                                                      |  |
| 32               |                             | [02] 60.0             | via the menu. For 230V machine, it is 50Hz by default.                                                                                                                                                                                                  |  |
| 02               | AC input  O3 voltage  range | [03] APL              | 230V machine wide range mains input voltage range 90~280V.                                                                                                                                                                                              |  |
| 03               |                             | [03] UPS<br>default   | 230V machine narrow range mains input voltage range 170~280V.                                                                                                                                                                                           |  |
| 04               | Battery to<br>mains         | [04] 43.6V<br>default | Parameter [01] = SBU, the battery voltage is lower than this setting value, the output is switched from inverter to mains, the setting range is 40V~52V. cannot be set more than [14] setting item.                                                     |  |

| 05 | Mains to battery                  | [05] 57.6V<br>default           | Parameter [01] = SBU, the battery voltage is higher than this setting value, the output is switched from mains to inverter, the setting range is 48V~60V. It cannot be set lower than [04] and [35] setting items.                                                                                                                               |  |
|----|-----------------------------------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|    |                                   | [06] CSO                        | PV priority charging. Only when the PV charging fails, the mains charging is started.  Mains priority charging. Only when the mains                                                                                                                                                                                                              |  |
| 06 | Charging mode                     | [06] CUB [06] SNU default       | charging fails, the PV charging is started.  PV and Mains hybrid charging. PV charging is a priority, and when the PV energy is insufficient, the mains charging supplements. When the PV energy is sufficient, the mains charging stops.  Note: Only when the Mains bypass output is loaded, the PV charging and the mains charging can work at |  |
|    |                                   | [06] OSO                        | the same time. When the inverter works, only the PV charging can be started.  Only PV charging, with the mains charging not                                                                                                                                                                                                                      |  |
| 07 | Maximum [07] 60A charging default |                                 | S series model, setting range 0~100A.                                                                                                                                                                                                                                                                                                            |  |
|    | Battery type                      | [08] USE                        | For user-defined, all battery parameters can be set.                                                                                                                                                                                                                                                                                             |  |
|    |                                   | [08] SLd                        | Sealed lead-acid battery, constant-voltage charge voltage is 57.6V, float charge voltage is 55.2V.                                                                                                                                                                                                                                               |  |
|    |                                   | [08] FLd                        | Flooded lead-acid battery, charge voltage at constant voltage is 58.4V and float charge voltage is 55.2V.                                                                                                                                                                                                                                        |  |
| 08 |                                   | [08] GEL                        | Gel lead-acid battery, charge voltage at constant voltage is 56.8V and float charge voltage is 55.2V.                                                                                                                                                                                                                                            |  |
|    |                                   | [08] L14/L15/L16<br>L16 default | Lithium iron phosphate battery L14/L15/L16 corresponds to lithium iron phosphate battery 14, 15, 16 strings. 16 strings, constant-voltage charge voltage is 56.8V. 15 strings, constant-voltage charge voltage is 53.2V. 14 strings, constant-voltage charge voltage is 49.2V.                                                                   |  |
|    |                                   | [08] N13/N14                    | Ternary lithium battery, which is adjustable. N13, constant-voltage charge voltage is 53.2V. N14, constant-voltage charge voltage is 57.6V.                                                                                                                                                                                                      |  |

| 09 | Boost charging voltage                     | [09] 56.8V<br>default | The setting range of boost charging voltage is 48V~58.4V with 0.4V step. Valid when the battery type is user-define and lithium.                                                                             |
|----|--------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 | Boost charging<br>maximum<br>time          | [10] 120<br>default   | Boost maximum charge time setting means setting of maximum charge time of voltage when the voltage reaches parameter [09] from 5min~900min at 5-minute step.                                                 |
| 11 | Float voltage                              | [11] 55.2V<br>default | 48V~58.4V setting range of float voltage at 0.4V step.                                                                                                                                                       |
| 12 | Over-discharging<br>voltage                | [12] 42V<br>default   | When the battery voltage is lower than the judgement point, after delaying for the parameter [13] setting time, turn off the inverter output. 40V~52V voltage setting range at 0.4V step.                    |
| 13 | Over-discharging<br>delay time             | [13] 5S<br>default    | So as to overdischarge delay time, when the battery voltage is lower than parameter [12], the inverter output is turned off after delaying the time set with the parameter. 5S~50S setting range at 5S step. |
| 14 | Battery<br>under-voltage<br>alarm point    | [14] 44V<br>default   | When the battery voltage is lower than the judgement point, an undervoltage alarm is given out and no turnoff is output. 40V~52V setting range at 0.4V step.                                                 |
| 15 | Battery<br>discharging<br>limit<br>voltage | [15] 40V<br>default   | When the battery voltage is lower than the judgement point, the output is turned off immediately. 40V~52V setting range at 0.4V step. Valid when the battery type is user-define and lithium.                |
|    |                                            | [16] DIS default      | Disable equalized charging.                                                                                                                                                                                  |
| 16 | Equalized charging                         | [16] ENA              | Enable equalized charging. Valid when battery type is flooded lead-acid batteries, sealed lead-acid batteries and user-defined.                                                                              |
| 17 | Equalized<br>charging<br>voltage           | [17] 56.8V<br>default | 48V~58.4V setting range at 0.4V step. Valid when the battery type is flooded lead-acid battery, sealed lead-acid battery and user-define.                                                                    |

| 18 | Equalized charging time                        | [18] 120<br>default | 5min~900min setting range at 5min step. Valid when the battery type is flooded lead-acid battery and sealed lead-acid battery.                                                                                              |
|----|------------------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 19 | Equalized charging delay                       | [19] 240<br>default | 5min~900min setting range at 5min step. Valid when the battery type is flooded lead-acid battery, sealed lead-acid battery and user-define.                                                                                 |
| 20 | Equalized charging interval                    | [20] 30<br>default  | 0~30days setting range at 1-day step. Valid when the battery type is flooded lead-acid battery, sealed lead-acid battery and user-define.                                                                                   |
|    | Equalized                                      | [21] ENA            | Start equalized charging immediately.                                                                                                                                                                                       |
| 21 | charging<br>enable                             | [21] DIS<br>default | Stop equalized charging immediately.                                                                                                                                                                                        |
|    | Energy-saving<br>mode                          | [22] DIS<br>default | Disable energy-saving mode.                                                                                                                                                                                                 |
| 22 |                                                | [22] ENA            | After the power saving mode is enabled, if the load is null or less than 50W, the inverter output is turned off after a delay for a certain period of time. When the load is more than 50W, the inverter automatic restart. |
|    |                                                | [23] DIS            | When the automatic restart after overload is disabled, if the output is turned off upon overload, the machine shall not restore.                                                                                            |
| 23 | Automatic<br>restart after<br>overload         | [23] ENA<br>default | When the automatic restart after overload is enabled, if the output is turned off upon overload, output is restarted by the mains after 3min delay. The machine shall not restarted after 5 times of restarts.              |
| 24 | Automatic<br>restart after<br>over-temperature | [24] DIS            | When automatic restart after over-temperature is disabled, if over-temperature occurs to switch off the output, the machine will no longer switch on the output.                                                            |
|    |                                                | [24] ENA<br>default | When automatic restart after over-temperature is enabled, If an over-temperature occurs to turn off the output, it will restart to turn on the output when the temperature drops.                                           |

|    |                                                      | [25] DIS                                                                                                                                             | Disable alarm.                                                                                                                                                                                                                                                                                                                                                                  |  |
|----|------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 25 | Buzzer alarm                                         | [25] ENA<br>default                                                                                                                                  | Enable alarm.                                                                                                                                                                                                                                                                                                                                                                   |  |
| 26 | Mode change alert                                    | [26] DIS                                                                                                                                             | Disable alarm, when the state of the main input source changes.                                                                                                                                                                                                                                                                                                                 |  |
| 20 | ivioue change alert                                  | [26] ENA<br>default                                                                                                                                  | Enable alarm, when the state of the main input source changes.                                                                                                                                                                                                                                                                                                                  |  |
|    | Inverter                                             | [27] DIS                                                                                                                                             | Disable automatic switching to mains when inverter is overloaded.                                                                                                                                                                                                                                                                                                               |  |
| 27 | overload to<br>bypass                                | [27] ENA<br>default                                                                                                                                  | Enable automatic switching to mains when inverter is overloaded.                                                                                                                                                                                                                                                                                                                |  |
| 28 | Maximum AC<br>charging<br>current                    | [28] 60A<br>default                                                                                                                                  | Maximum AC charging current setting. Setting range 0~60A, default 60A.                                                                                                                                                                                                                                                                                                          |  |
| 30 | Communication address setting                        | [30] 1<br>default                                                                                                                                    | Parallel mode needs to be set, the setting range is 1-6, and cannot be set in parallel operation. Note: Parallel mode can assign address automatically, usually no need to set manually.                                                                                                                                                                                        |  |
|    | AC output mode<br>(settable in standby<br>mode only) | [31] SIG default                                                                                                                                     | Single machine setting.                                                                                                                                                                                                                                                                                                                                                         |  |
|    |                                                      | [31] PAL                                                                                                                                             | Single-phase parallel connection setting.                                                                                                                                                                                                                                                                                                                                       |  |
|    |                                                      | [31] 3P1/3P2/3P3                                                                                                                                     | Three-phase parallel connection setting.                                                                                                                                                                                                                                                                                                                                        |  |
| 31 |                                                      | All machines in phase All machines in phase When the output volume At present, the volume P2-P3) is 120 degral and the live wire the line voltage be | ase 1 must be set as "3P1".  ase 2 must be set as "3P2".  ase 3 must be set as "3P3".  voltage set in the setting [38] is 230Vac (S model):  tage phase difference between (P1-P2, P1-P3, rees, the line voltage between the live wire L1 in phase L2 in phase 2 is 230*1.732 = 398Vac, and similarly tween L1-L3, L2-L3 is 398Vac; the single phase 1-N, L2-N, L3-N is 230Vac. |  |

| 32 | RS485-2                                                          | [32] SLA default       | RS485-2 port for PC and remote monitoring protocol.                                                                                                                |
|----|------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 32 | communication                                                    | [32] BMS               | RS485-2 port for BMS communication.                                                                                                                                |
| 33 | BMS communication                                                |                        | item = BMS, you need to select the corresponding nufacturer's brand for communication.                                                                             |
| 33 | protocols                                                        |                        | RITAR, AOG=ALLGRAND, OLT=OLITER,<br>DAQ=DYNESS, WOW=SRNE, PYL=PYLONTECH,                                                                                           |
|    | Hybrid power to load and on-grid setting                         | [34] DIS default       | Disable this function.                                                                                                                                             |
| 34 |                                                                  | [34] Lod               | Hybrid power to load mode, in which the PV is only charged first in utility mode and the remaining energy is supplied to the load and not fed into the grid.       |
|    |                                                                  | [34] Grd               | On-grid function, in utility mode, the PV is charged first and the remaining energy is supplied to the load and fed into the grid.                                 |
| 35 | Low-voltage disconnect battery voltage recovery point (fault 04) | [35] 52V<br>default    | When the battery low voltage disconnects the inverter output, the battery voltage needs to be greater than this setting to restore the battery inverter AC output. |
| 36 | Maximum PV charging current                                      | [36] 80A default       | Maximum PV charging current setting: 0~100A.                                                                                                                       |
| 37 | Battery fully<br>charged<br>recovery point                       | [37] 52V<br>default    | After the battery is fully charged, it needs to be lower than this set voltage before it can be recharged.                                                         |
| 38 | AC output<br>voltage<br>setting                                  | [38] 230Vac<br>default | S series models: allow to set to 200 / 208 / 220 / 230 / 240Vac, default 230Vac.  AC output power = (Rated Power)*(Setting voltage/230)                            |

| 39 | Charging current limiting method | [39] BMS default | This mode only takes effect when the inverter communicates successfully with the lithium battery BMS (Battery Management System), and the following options can be set:  [SET] When this option is selected, the inverter charging current adopts the value set in item [07], in which case item [07] can be set to any value from 0 to the maximum charging current.  [BMS] When this option is selected, the charging limit current transmitted by BMS and the value set in [07] will be compared, and the smaller value will be taken as the current charging current, in this case, the charging current that can be set in [07] can not be greater than the the charging limit current of BMS.  After [INV] is selected, it will compare the inverter internal current limit value with the value set in item                   |
|----|----------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                  |                  | [07], and take the smaller of them as the current charging current. At this time, charging current can be set in item [07] can not be greater than the inverter internal current limit value, and the logic for the inverter internal current limit value is:  1. When the battery SOC>98%, the charging current is reduced to 1/16 of the rated charging current value of the inverter.  2. When the battery SOC>95%, the charging current is reduced to 1/8 of the rated charging current of the inverter.  3. When the battery SOC>90%, the charging current is reduced to the inverter rated charging current value 1/4.  4. When battery SOC>85%, the charging current is reduced to the inverter rated charging current is reduced to the inverter rated charging current is reduced to the inverter rated charging current is |
| 57 | Stop charging current            | [57] 2A default  | Stop charging when the charging current is less than the set value.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 58 | Discharge alarm SOC setting      | [58] 15% default | SOC alarm when capacity is less than this setting. (Valid when BMS communication is normal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

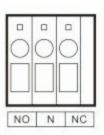
| 59 | Stop discharging<br>SOC setting       | [59] 5% default   | Discharge stops when the capacity is less than this setting value. (Valid when BMS communication is normal)              |
|----|---------------------------------------|-------------------|--------------------------------------------------------------------------------------------------------------------------|
| 60 | Stop charging SOC setting             | [60] 100% default | When the capacity is greater than this setting value, charging stops. (Valid when BMS communication is normal)           |
| 61 | Switching to mains SOC setting        | [61] 10% default  | When the capacity is less than this setting value, switch to mains power. (Valid when BMS communication is normal)       |
| 62 | Switch to inverter output SOC setting | [62] 100% default | When the capacity is greater than this setting, switch to inverter output mode. (Valid when BMS communication is normal) |

## 4.6 Battery type parameters

## For Lead-acid Battery:

| Battery type Parameters                                                        | Sealed lead<br>acid battery<br>(SLD) | Gel lead<br>acid battery<br>(GEL) | Flooded lead<br>acid battery<br>(FLD) | User-defined<br>(USE) | Adjustable |
|--------------------------------------------------------------------------------|--------------------------------------|-----------------------------------|---------------------------------------|-----------------------|------------|
| Overvoltage disconnection voltage                                              | 60V                                  | 60V                               | 60V                                   | 60V                   |            |
| Battery fully charged recovery point(setup item [37])                          | 52V                                  | 52V                               | 52V                                   | 52V                   | <b>V</b>   |
| Equalizing charge voltage                                                      | 58.4V                                | -                                 | 59.2V                                 | 40 ~ 60V              | <b>V</b>   |
| Boost charge voltage                                                           | -                                    | _                                 | _                                     | 40 ~ 60V              | √          |
| Floating charge voltage                                                        | 55.2V                                | 55.2V                             | 55.2V                                 | 40 ~ 60V              | √          |
| Undervoltage alarm voltage([01] fault)                                         | 44V                                  | 44V                               | 44V                                   | 40~60V                | <b>V</b>   |
| Undervoltage alarm voltage recovery point([01] fault)                          |                                      | Undervoltage ala                  | arm voltage+0.8V                      |                       |            |
| Low voltage disconnection voltage([04] fault)                                  | 42V                                  | 42V                               | 42V                                   | 40 ~ 60V              | ٧          |
| Low voltage disconnection voltage recovery point ([04] fault)(setup item [35]) | 52V                                  | 52V                               | 52V                                   | 52V                   | V          |
| Discharge limit voltage                                                        | -                                    | -                                 | _                                     | 40 ~ 60V              | √          |
| Over-discharge delay time                                                      | 5s                                   | 5s                                | 5s                                    | 1 ~ 30s               | <b>V</b>   |
| Equalizing charge duration                                                     | 120 minutes                          | -                                 | 120<br>minutes                        | 0 ~ 600<br>minutes    | <b>V</b>   |
| Equalizing charge interval                                                     | 30 days                              | -                                 | 30 days                               | 0 ~ 250<br>days       | <b>V</b>   |
| Boost charge duration                                                          | -                                    | -                                 | -                                     | 10 ~ 600<br>minutes   | √          |

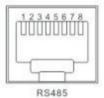
## For Lithium Battery:


| Battery type Parameters                                                                 | Ternary<br>(N13)                | Ternary<br>(N14) | LFP (L16)      | LFP<br>(L15)   | LFP<br>(L14)   | Adjustable |
|-----------------------------------------------------------------------------------------|---------------------------------|------------------|----------------|----------------|----------------|------------|
| Overvoltage<br>disconnection<br>voltage                                                 | 60V                             | 60V              | 60V            | 60V            | 60V            |            |
| Battery fully charged recovery point(setup item [37])                                   | 50.4V                           | 54.8V            | 53.6V          | 50.4V          | 47.6V          | V          |
| Equalizing charge voltage                                                               | -                               | _                | -              | _              | _              | √          |
| Boost charge voltage                                                                    | 53.2V                           | 57.6V            | 56.8V          | 53.2V          | 49.2V          | √          |
| Floating charge voltage                                                                 | 53.2V                           | 57.6V            | 56.8V          | 53.2V          | 49.2V          | √          |
| Undervoltage alarm voltage([01] fault)                                                  | 43.6V                           | 46.8V            | 49.6V          | 46.4V          | 43.2V          | <b>√</b>   |
| Undervoltage alarm voltage recovery point([01] fault)                                   | Undervoltage alarm voltage+0.8V |                  |                |                |                |            |
| Low voltage disconnection voltage([04] fault)                                           | 38.8V                           | 42V              | 48.8V          | 45.6V          | 42V            | V          |
| Low voltage<br>disconnection voltage<br>recovery point ([04]<br>fault)(setup item [35]) | 46V                             | 49.6V            | 52.8V          | 49.6V          | 46V            | V          |
| Discharge limit voltage                                                                 | 36.4V                           | 39.2V            | 46.4V          | 43.6V          | 40.8V          | √          |
| Over-discharge delay time                                                               | 30s                             | 30s              | 30s            | 30s            | 30s            | <b>V</b>   |
| Equalizing charge duration                                                              | -                               | _                | -              | -              | _              |            |
| Equalizing charge interval                                                              | -                               | _                | -              | -              | _              |            |
| Boost charge duration                                                                   | 120<br>minutes                  | 120<br>minutes   | 120<br>minutes | 120<br>minutes | 120<br>minutes | √          |

## 5. Other Function

## 5.1 Dry contact function

Working principle: this dry node can control the switch of diesel generator to charge the battery.

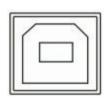

- ① Under normal conditions, in this terminal, NC-N point is closed and NO-N point is opened;
- ② when the battery voltage reaches the low-voltage disconnection voltage point, the coil of the relay is energized and NO-N point is closed and NC-N point opened. At this time, NO-N point can drive resistive loads 125VAC/1A, 230VAC/1A and 30VDC/1A.



#### 5.2 RS485 communication function

There are two communication ports, RS485 and WIFI, and two functions:

- ① RS485 port allows RS485 communication with lithium battery BMS.
- ② WIFI port can be connected with our self-developed RS485 to WIFI/GPRS communication module, which can be connected to our reverse control machine, and you can check the operation parameters and status of the reverse control machine through mobile phone APP.




3 As shown in the figure:

RS485: pin 1 for 5V power, pin 2 for GND, pin 7 for RS485-A1, pin 8 for RS485-B1. WIFI: pin 1 for 5V power, pin 2 for GND, pin 7 for RS485-A2, pin 8 for RS485-B2.

#### 5.3 USB communication function

This port is a USB communication port, which can be used for USB communication with the selected upper computer software of our company (Need to apply for). To use this port, the corresponding "USB to serial port chip CH340T driver" should be installed in the computer.



## 6. Protection

## 6.1 Protection function

| No. | Protections                           | Description                                                   |
|-----|---------------------------------------|---------------------------------------------------------------|
|     |                                       | When charging current or power of the PV array                |
| 1   | PV current/power limiting protection  | configured exceeds the PV rated, it will charge at the rated. |
|     |                                       | At night, the battery is prevented from discharging           |
| 2   | PV night reverse-current protection   | through the PV module because the battery voltage is          |
|     |                                       | greater than the voltage of PV module.                        |
|     |                                       | When the mains voltage exceeds 280V, the mains                |
| 3   | Mains input over voltage protection   | charging will be stopped and switched to the inverter         |
|     |                                       | mode.                                                         |
|     |                                       | When the mains voltage is lower than 170V (230V               |
| 4   | Mains input under voltage protection  | model /UPS mode), the mains charging will be stopped          |
|     |                                       | and switched to the inverter mode.                            |
|     |                                       | When the battery voltage reaches the overvoltage              |
| _   | Battery over voltage protection       | disconnection point, the PV and the mains will be             |
| 5   |                                       | automatically stopped to charge the battery to prevent        |
|     |                                       | the battery from being overcharged and damaged.               |
|     | Battery low voltage protection        | When the battery voltage reaches the low voltage              |
|     |                                       | disconnection point, the battery discharging will be          |
| 6   |                                       | automatically stopped to prevent the battery from being       |
|     |                                       | over-discharged and damaged.                                  |
|     |                                       | When a short-circuit fault occurs at the load output          |
| 7   | Load output short circuit protection  | terminal, the AC output is immediately turned off and         |
|     |                                       | turned on again after 1 second.                               |
|     |                                       | When the internal temperature is too high, the all-in-one     |
|     | Heat sink over temperature protection | machine will stop charging and discharging; when the          |
| 8   | Heat sink over temperature protection | temperature returns to normal, charging and                   |
|     |                                       | discharging will resume.                                      |
|     |                                       | Output again 3 minutes after an overload protection,          |
|     |                                       | and turn the output off after 5 consecutive times of          |
| 9   | Overload protection                   | overload protection until the machine is re-powered. For      |
|     |                                       | the specific overload level and duration, refer to the        |
|     |                                       | technical parameters table in the manual.                     |
|     | DV                                    | When the PV polarity is reversed, the machine will not        |
| 10  | PV reverse polarity protection        | be damaged.                                                   |
|     |                                       | Prevent battery inverter AC current from being reversely      |
| 11  | AC reverse protection                 | input to Bypass.                                              |
|     |                                       | прасто Буразы                                                 |

| 12 | Bypass over current protection        | Built-in AC input overcurrent protection circuit breaker.                                                                                                                                     |
|----|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13 | Battery input over current protection | When the discharge output current of the battery is greater than the maximum value and lasts for 1 minute, the AC input would switched to load.                                               |
| 14 | Battery input protection              | When the battery is reversely connected or the inverter is short-circuited, the battery input fuse in the inverter will blow out to prevent the battery from being damaged or causing a fire. |
| 15 | Charge short-circuit protection       | When the external battery port is short-circuited in the PV or AC charging state, the inverter will protect and stop the output current.                                                      |

## 6.2 Meaning of fault code

| Fault code | Fault name       | Whether it affects the output or not | Description                                                       |
|------------|------------------|--------------------------------------|-------------------------------------------------------------------|
| [01]       | BatVoltLow       | No                                   | Battery undervoltage alarm                                        |
| [02]       | BatOverCurrSw    | Yes                                  | Battery discharge average current overcurrent software protection |
| [03]       | BatOpen          | Yes                                  | Battery not-connected alarm                                       |
| [04]       | BatLowEod        | Yes                                  | Battery undervoltage stop discharge alarm                         |
| [05]       | BatOverCurrHw    | Yes                                  | Battery overcurrent hardware protection                           |
| [06]       | BatOverVolt      | Yes                                  | Charging overvoltage protection                                   |
| [07]       | BusOverVoltHw    | Yes                                  | Bus overvoltage hardware protection                               |
| [08]       | BusOverVoltSw    | Yes                                  | Bus overvoltage software protection                               |
| [09]       | PvVoltHigh       | No                                   | PV overvoltage protection                                         |
| [10]       | PvBoostOCSw      | No                                   | Boost overcurrent software protection                             |
| [11]       | PvBoostOCHw      | No                                   | Boost overcurrent hardware protection                             |
| [12]       | bLineLoss        | No                                   | Mains power down                                                  |
| [13]       | OverloadBypass   | Yes                                  | Bypass overload protection                                        |
| [14]       | OverloadInverter | Yes                                  | Inverter overload protection                                      |
| [15]       | AcOverCurrHw     | Yes                                  | Inverter overcurrent hardware protection                          |
| [17]       | InvShort         | Yes                                  | Inverter short circuit protection                                 |

| [19] | OverTemperMppt      | No  | Buck heat sink over temperature protection                   |  |
|------|---------------------|-----|--------------------------------------------------------------|--|
| [20] | OverTemperInv       | Yes | Inverter heat sink over temperature protection               |  |
| [21] | FanFail             | Yes | Fan failure                                                  |  |
| [22] | EEPROM              | Yes | Memory failure                                               |  |
| [23] | ModelNumErr         | Yes | Model setting error                                          |  |
| [26] | RlyShort            | Yes | Inverted AC Output Backfills to Bypass AC Input              |  |
| [29] | BusVoltLow          | Yes | Internal battery boost circuit failure                       |  |
| [30] | BatCapacityLow1     | No  | Battery capacity below 10% alarm (valid when BMS is enabled) |  |
| [31] | BatCapacityLow2     | No  | Battery capacity below 5% alarm (valid when BMS is enabled)  |  |
| [32] | BatCapacityLowS top | Yes | Battery low capacity shutdown (valid when BMS is enabled)    |  |
| [34] | CanCommFault        | Yes | CAN communication fault in parallel operation                |  |
| [35] | ParaAddrErr         | Yes | Parallel ID setting error                                    |  |
| [36] | -                   | -   | _                                                            |  |
| [37] | ParaShareCurrErr    | Yes | Parallel current sharing fault                               |  |
| [38] | ParaBattVoltDiff    | Yes | Large battery voltage difference in parallel mode            |  |
| [39] | ParaAcSrcDiff       | Yes | Inconsistent AC input source in parallel mode                |  |
| [40] | ParaHwSynErr        | Yes | Hardware synchronization signal error in parallel mode       |  |
| [41] | InvDcVoltErr        | Yes | Inverter DC voltage error                                    |  |

| [42] | SysFwVersionDiff                      | Yes | Inconsistent system firmware version in parallel mode                                                                                                 |  |
|------|---------------------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| [43] | ParaLineContErr                       | Yes | Parallel line connection error in parallel mode                                                                                                       |  |
| [44] | Serial number error                   | YES | If the serial number is not set by omission in production, please contact the manufacturer to set it                                                  |  |
| [45] | Error setting of splitphase mode      | YES | 【31】 settings item setting error                                                                                                                      |  |
| [58] | BMS communication fault               | NO  | Check whether the communication cable is connected correctly and whether item [33] is set to the corresponding lithium battery communication protocol |  |
| [59] | BMS alarm                             | NO  | Check the BMS fault type and troubleshoot battery problems                                                                                            |  |
| [60] | BMS battery low-temperature alarm     | NO  | Li-ion battery BMS low-temperature alarm                                                                                                              |  |
| [61] | BMS battery over-temperature alarm    | NO  | Li-ion battery BMS over-temperature alarm                                                                                                             |  |
| [62] | BMS battery<br>over-current<br>alarm  | NO  | Li-ion battery BMS over-current alarm                                                                                                                 |  |
| [63] | BMS battery<br>under-voltage<br>alarm | NO  | Li-ion battery BMS under-voltage alarm                                                                                                                |  |
| [64] | BMS battery<br>over-voltage<br>alarm  | NO  | Li-ion battery BMS over-voltage alarm                                                                                                                 |  |

## 6.3 Some fault troubleshooting

| Fault code   | Faults                                   | Remedy                                           |  |  |
|--------------|------------------------------------------|--------------------------------------------------|--|--|
|              |                                          | Check if the battery the PV air switch has       |  |  |
| Display      | No display on the screen                 | been closed; if the switch is in the "ON" state; |  |  |
|              | Two display of the sereen                | press any button on the screen to exit the       |  |  |
|              |                                          | screen sleep mode.                               |  |  |
|              |                                          | Measure if the battery voltage exceeds rated,    |  |  |
| [06]         | Battery overvoltage protection           | and turn off the PV array air switch and Mains   |  |  |
|              |                                          | air switch.                                      |  |  |
| [01] [04]    | Battery undervoltage protection          | Charge the battery until it returns to the low   |  |  |
| 10.7 10.7    | Dation, and or total get protection      | voltage disconnection recovery voltage.          |  |  |
| [21]         | Fan failure                              | Check if the fan is not turning or blocked by    |  |  |
| 12.7         | T di l'allais                            | foreign object.                                  |  |  |
|              |                                          | When the temperature of the device is cooled     |  |  |
| 【19】【20】     | Heat sink over temperature protection    | below the recovery temperature, normal           |  |  |
|              |                                          | charge and discharge control is resumed.         |  |  |
| [13] [14]    | Bypass overload protection, inverter     | Reduce the use of power equipment;               |  |  |
| 1.02 1.12    | overload protection                      | ② Restart the unit to resume load output.        |  |  |
|              |                                          | Check the load connection carefully and          |  |  |
| [17]         | Inverter short circuit protection        | clear the short-circuit fault points;            |  |  |
|              |                                          | ② Re-power up to resume load output.             |  |  |
|              |                                          | Use a multimeter to check if the PV input        |  |  |
| [09]         | PV overvoltage                           | voltage exceeds the maximum allowable input      |  |  |
|              |                                          | voltage rated.                                   |  |  |
| [03]         | Battery disconnected alarm               | Check if the battery is not connected or if the  |  |  |
| 1001         | Dation, aloosimostou alami               | battery circuit breaker is not closed.           |  |  |
|              |                                          | Check whether the parallel line is not           |  |  |
| [40] [43]    | Parallel connection fault                | connected well, such as loose or wrong           |  |  |
|              |                                          | connection.                                      |  |  |
| [35]         | Parallel ID setting error                | Check whether the setting of parallel ID number  |  |  |
| 1001         | raiding one                              | is repeated.                                     |  |  |
|              |                                          | Check whether the parallel current sharing line  |  |  |
| [37]         | Parallel current sharing fault           | is not connected well, such as loose or wrong    |  |  |
|              |                                          | connection.                                      |  |  |
| [39]         | Inconsistent AC input source in parallel | Check whether the parallel AC inputs are from    |  |  |
| 1901         | mode                                     | the same input interface.                        |  |  |
| [42]         | Inconsistent system firmware version in  | Check whether the software version of each       |  |  |
| \ 7 <b>4</b> | parallel mode                            | inverter is consistent.                          |  |  |

## 7. System Maintenance

- > In order to maintain the best long-term performance, it is recommended to conduct following checks twice a year.
- 1. Confirm that the air flow around the machine will not be blocked. In addition, remove any dirt or debris from the radiator.
- 2. Check whether the insulation of all exposed wires is damaged due to sun exposure, friction with other objects around, dry rot, insect or rat damage, etc. If necessary, it is required to repair or replace the wires.
- 3. Verify that the indication and display are consistent with the operation of the device. Please pay attention to any fault or error display and take corrective measures if necessary.
- 4. Check all terminals for corrosion,insulation damage,high temperature or burning/discoloration sign, and tighten the terminal screws.
- 5. Check for dirt, nesting insects and corrosion phenomenon and clean as required.
- 6. If the arrester has failed, replace the failed arrester in time to protect the machine and other user device against lightning damage.

**Warning:** Danger of electric shock! To perform above operations, make sure that all the power supplies of the machine have been broken and all the capacitor electricity has been discharged. Afterwards, corresponding inspection or operation can be performed!

#### We are not responsible for any following damage:

- ① Damage caused by improper use or use in inappropriate place.
- Open-circuit voltage of PV module exceeds maximum allowable voltage.
- 3 The damage caused by the operation ambient temperature beyond the limited operation temperature range.
- 4 Personally take apart and maintain the machine.
- Damage caused by force majeure: damage caused by transportation and handling of the machine.



# Residential Stacked Energy Storage System

| Model                                  | AKSA-5                                                                              | AKSA-10                                | AKSA-15         | AKSA-20     |  |  |
|----------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------|-----------------|-------------|--|--|
|                                        | 0                                                                                   | ieneral                                |                 |             |  |  |
| Battery Type                           | LiFePO <sub>4</sub> (LFP)                                                           |                                        |                 |             |  |  |
| Battery Capacity                       | 100Ah                                                                               | 200Ah                                  | 300Ah           | 400Ah       |  |  |
| DC Nominal Voltage                     |                                                                                     | 5                                      | 1.2V            |             |  |  |
| Power Capacity                         | 5.12KWH                                                                             | 10.24KWH                               | 15.36KWH        | 20.48KWH    |  |  |
| BMS                                    | Over Charge, Over Discharge, Over Current, Short Circuit And Temperature Protection |                                        |                 |             |  |  |
| Cycle Life                             | 6000 times                                                                          |                                        |                 |             |  |  |
| Discharge Voltage                      | 43.2V-55.2V                                                                         |                                        |                 |             |  |  |
| Charge Voltage                         | 56V-58.4V                                                                           |                                        |                 |             |  |  |
| Charging Current                       | Default 100A Or Customized                                                          |                                        |                 |             |  |  |
|                                        | So                                                                                  | lar Input                              |                 |             |  |  |
| Maximum PV Open-circuit Voltage        |                                                                                     | 50                                     | 0Vdc            |             |  |  |
| PV Working Voltage Range               | 120-500Vdc                                                                          |                                        |                 |             |  |  |
| MPPT Voltage Range                     | 120-450Vdc                                                                          |                                        |                 |             |  |  |
| Maximum PV Input Current               |                                                                                     | á                                      | 22A             |             |  |  |
| Maximum PV Input Power                 |                                                                                     | 55                                     | 00W             |             |  |  |
| Maximum PV Charging Current            | 80A                                                                                 |                                        |                 |             |  |  |
|                                        | AC Input (                                                                          | generator/grid )                       |                 |             |  |  |
| Mains Maximum Charging Current         |                                                                                     | (                                      | 50A             |             |  |  |
| Rated Input Voltage                    |                                                                                     | 220/                                   | ′230Vac         |             |  |  |
|                                        | Ups Mains Mode : (170Vac-280Vac)土2%                                                 |                                        |                 |             |  |  |
| Input Voltage Range                    |                                                                                     | APL Generator Mode : (90Vac-280Vac)+2% |                 |             |  |  |
| Frequency                              | 50Hz/ 60Hz (Automatic Detection)                                                    |                                        |                 |             |  |  |
| Mains Charging Efficiency              | >95%                                                                                |                                        |                 |             |  |  |
| Switch Time (bypass and inverter)      | 10ms(Typical Value)                                                                 |                                        |                 |             |  |  |
| Maximum Bypass Overload Current        |                                                                                     | 4                                      | 40A             |             |  |  |
| 71                                     | AC                                                                                  | Output                                 |                 |             |  |  |
| Output Voltage Waveform Pure Sine Wave |                                                                                     |                                        |                 |             |  |  |
| Rated Output Voltage (Vac)             | 230Vac(200/208/220/240Vac)                                                          |                                        |                 |             |  |  |
| Rated Output Power (VA)                |                                                                                     | •                                      | 1500/4750/5000) |             |  |  |
| Rated Output Power(W)                  | 5000 (4350/4500/4750/5000)                                                          |                                        |                 |             |  |  |
| Peak Power                             | 10000VA                                                                             |                                        |                 |             |  |  |
| On-load Motor Capacity                 | 4HP                                                                                 |                                        |                 |             |  |  |
| Output Frequency Range(Hz)             | 50Hz+0.3Hz/60Hz+0.3Hz                                                               |                                        |                 |             |  |  |
| Maximum Efficiency                     | >92%                                                                                |                                        |                 |             |  |  |
|                                        |                                                                                     | Other                                  |                 |             |  |  |
| Dimension(mm)                          | 590*550*380                                                                         | 590*550*530                            | 590*550*680     | 590*550*830 |  |  |
| Weight(kg)                             | 48kg                                                                                | 93kg                                   | 138kg           | 183kg       |  |  |
| Communication                          |                                                                                     |                                        |                 | 103kg       |  |  |
| Digital Display                        | CAN;RS485;RS232;WiFi Optional  LCD Optional                                         |                                        |                 |             |  |  |
| Warranty                               | 5 years                                                                             |                                        |                 |             |  |  |
| Input Protection                       | IP65                                                                                |                                        |                 |             |  |  |
| Working Temperature                    | -15°C to 55°C                                                                       |                                        |                 |             |  |  |
|                                        | -13 € to 35 €<br>-20°€ to 45°€                                                      |                                        |                 |             |  |  |
| Transport Or Storage Temperature       | -20 C to 45 C                                                                       |                                        |                 |             |  |  |